metal case
8 (804) 333-68-30 Задать вопрос

Газ для лазерной резки металла — зачем нужен и каким бывает?

Обязательное условие для современной лазерной резки металла — струя сжатого газа, подаваемая в зону реза. Суть лазерной резки в том, чтобы расплавить материал в нужных областях — и удалить получившийся расплав, оставив необходимый контур. За плавку металла отвечает сам лазерный луч, а за удаление расплава — как раз‑таки газ. Но это не единственная функция, которую он выполняет.

5 функций вспомогательного газа при лазерной резке

  1. Уже упомянутая основная функция — удаление расплава из зоны резки.
  2. Дополнительно струя газа охлаждает края разреза. Одно из важных преимуществ лазерной резки перед другими способами раскроя металла — отсутствие тепловых деформаций. Это преимущество растет из того, что при лазерной резке сильному нагреву подвергается только область реза, а нагрев остальных областей недостаточен для деформации. Во многом это преимущество объясняется именно охлаждением от струи газа.
  3. Струя газа в зоне резки не дает образоваться очагу плазмы, который непредсказуемо изменил бы протекание резки.
  4. Газ, направленный в нужном направлении, защищает оптику лазера от расплавленного и испаренного металла, который мог бы повредить ее.
  5. Пятая функция зависит от того, какой газ выбран. Оба варианта нужны, но подходят для разных материалов:
    • активный газ включается в экзотермическую реакцию и делает резку быстрее и эффективней;
    • инертный газ, напротив, отсекает от зоны резки активный газ воздуха и не дает краям разреза реагировать с ним.

Вспомогательные газы, которые можно применять при резке

Есть 4 основных варианта вспомогательных газов, которые используются при лазерном раскрое металла.

  • Активный газ — кислород.
  • Условно инертный газ — азот.
  • Настоящие инертные газы — например, аргон и гелий.
  • Атмосферный воздух.

Сейчас подробно разберем каждый из них.

Лазерная резка с использованием кислорода

Кислородная резка — метод, который используют для:

  • углеродистых сталей;
  • сталей с низким содержанием легирующих добавок.
Кислород — окислитель, важный участник экзотермических реакций. При подаче в зону резки он увеличивает выделение тепла — и таким образом делает процесс быстрее и эффективней.

Но у окислительной активности кислорода есть и второе следствие — окислиться могут и кромки разреза. А этого допускать нельзя. В случае с черной и низколегированной сталью этот процесс можно контролировать путем грамотного расчета. Для других материалов контролировать окисление сложнее — и поэтому резка в кислороде портит их кромки.

Лазерная резка с использованием азота

Азот в лазерной резке используется как условно инертный газ. Что значит «условно»? Азот не является инертным газом в полном смысле слова. Он тоже вступает в химические реакции. Но он не является окислителем — а именно реакций окисления и горения стремятся избежать производственники при работе с большей частью металлов.

В азоте режут:

  • нержавейку,
  • высоколегированные стали,
  • алюминий,
  • никель.
Азот не просто не вступает в окислительные реакции в зоне разреза сам — струя сжатого азота вытесняет из зоны разреза атмосферный воздух, содержащий кислород. И этот кислород, соответственно, также не портит разрез.

Что может сделать кислород при резке алюминия? Испортить основное качество лазерной резки — чистые и ровные края разрезов. При раскрое алюминия в кислороде края получаются неровными, испещренными заусенцами. Раньше алюминий все равно резали в кислороде, потому что мощностей установок не хватало — а потом механически обрабатывали края, чтобы исправить их качество. Но с механической обработкой производство, естественно, становилось дольше и дороже. Теперь же в этом нет нужды — станки мощные, можно использовать азот и получать качественный рез сразу.

Лазерная резка в истинных инертных газах

Истинные инертные газы — такие как аргон и гелий — не только не участвуют в окислении, но и вообще не реагируют с расплавленным в резке материалом. И, соответственно, вытесняют из зоны резки все газы, которые могли бы с ним прореагировать.

Для большинства металлов в лазерной резке это просто не нужно. Ну ничего страшного не произойдет, если у алюминия будет возможность реагировать с азотом. Но, вот, например, титан…

При лазерной резке титана могут возникнуть не только ненужные оксиды, которые портят качество реза, но и соединения титана с азотом. Они отличаются повышенной хрупкостью — и их там быть не должно. Значит, резать титан в азоте нельзя. Зато можно в истинных инертных газах.

Однако эти инертные газы стоят значительно дороже азота — поэтому используют их только в тех случаях, когда без них действительно не обойтись.

Лазерная резка в атмосферном воздухе

Этот вариант резки лишен основных преимуществ кислородной и азотной резки. Зато сырье для него — очень дешевое, с помощью компрессора его можно брать просто из окружающего пространства.

С одной стороны, кислород в нем есть — значит, резка немного ускоряется. Но со скоростью резки в кислородной струе не сравнится. На более долгую резку уходит больше электроэнергии — так что экономия на газе становится несколько сомнительной.

С другой стороны, благодаря тому же свойству его не рекомендуется использовать для резки материалов, у которых проблемы с окислением.

Лазерная резка в различных газах в «Металл‑Кейсе»

Мы режем металл в кислороде, азоте и инертных газах. Давайте обсудим конкретику — что вас интересует? Какой материал, какие детали и какой объем партии? Наш специалист готов рассчитать стоимость и сроки вашего возможного заказа, чтобы вы могли принять взвешенное решение, хотите ли работать с нами. Отправьте нам ваш контактный телефон через форму ниже, чтобы он мог связаться с вами.